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A (d,c,v)-graph is a c-connected graph of diameter ci in which each node is of

valence v. A m inimu m ‘(d,c ,v)—graph is one with the m inimvm number of nodes . Each

min imum (d,c,v)-graph corresponds to an efficient way of arrangin g the stations of a

communication network so that if any c .- 1 stations are incapacitated , the res t of

the network is still connected , and so that in case of breakdown or other difficulty

each station can rely for assistance on precisely v others. Here the minimu m (d ,3,3)-

graphs are classified and counted for odd d.
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Classification and Enumeration of (Jinimum (d , 3, 3)—Graphs for Odd d

VICTOR KLEE

University of Washington , Seattle , ~ishington

A (d,c ,v)—graph is a c—connected graph of t~.ameter d in which

each node is of valence v . A minimum (d,c ,v)-gr~j~~ is one with the

minimum number of nodes. In 174], minimum (d ,c ,v)--.graphs are

constructed for all d , c and v. In [5] the minimum (d ,l,3)—graphs

and minimum (d,2,3)— graphs are classified and counted. These tasks

are performed here for the minimum (d,3,3)—g~~ -hs when d is odd.

The main result is that if ~ = (13 — ~~~~)/2 , n (13 + ~~~~)/2, and

- 

= ~~~~~~~ odd 
(J )133-i 129(1 1)/2

then the number of (isomorphism types of) minimum (d,3,3)—graphs i~

equal to

~~2j ~~2j-2 
+ - 22

~j-l 
+ 15

~~~ 2 
- ~j-2

when d 14j + 1 � 9 and to

3 5 3 13 + 5 — J4 J~~1 2j 1  + 1l~~2j—1 
— 

~~2j 
+ — ‘r~ ~~~-i 

—

when d = LU + 3 � 7.

The methods used here can be adapted to yie1~1 ~nfo~rniation about the

number of minimum ( d,3,3)—graphs when d i~ even , but the precise

determination of that number would seem to reqtiir~ additional ideas

not included here . In any case , even values of d are ignored except

in the first section of the paper.
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1.1

- - : 1. SEINES t~PD ROOTED SEI~ I~S

In a connected graph G, two nodes x and y form a diarnetral

pair if the G—distance 60(x ,y) is equal to the diameter ~( G ) .

Diarnetral pairs are unordered unless otherwise specified . A diametral

node is one that belongs to a diametral pair. rT~~~O or more paths are

independent if any node common to two of the paths is an end of both.

When n is even , a simple n—seine is a 3-valent graph of diameter

d = n + 1 formed from three independent paths A , B and C of len~ th d

joining the two nodes of a diametral pair , tcr~ tiier with the 3n/2

edges of a matching that covers all intermediate nodes of the ~~~~~

The same definition applies when n is odd , exc~ nt that t hen  t~~ : ra~~~

are of length d , one is of length d + 1, wd tliere are (3n + 1) / 2

edges in the matchinp . When n is odd , a split n—seine Js a 3-v~~T~ent

graph of diameter d = n + 1 formed from th~’~ r~ i ndependent paths of

length d joining the two nodes of a diametral pair , topetlier W i t h  an

additional node z and the (3n + l)/2 edges of a matching that

covers z and all intermediate nodes of the paths .  It is easy to

verify that simple n—seines exist for all n > 1 and split n—s~’ines

exist for all odd n > 1. The numbers of (isomrrohism types of) split

1—seines , simple 1—seines and simple 2—seines are respectively 1, 1 and

2. See Figures 1 and 2.

(Fi~ ure 1 is to be inserL~ d her€ )

Fig. 1: The split 1—seine and the simple 1— seine

(Figure 2 is to be inse2 ted P re)

Fig . 2: The two simple 2_sein :n 
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1.2

1.1 THEOREIVI When d is odd , a ~~~~ is a minimum (d , 3 , 3 ) -graph if

and only if it is a simple (d — 1)-seine . When d is even, a graph

is a minimum (d,3,3)—graph if and only if it 13 a split (d — 1)—seine

or a simple (d — 1)—seine.

Proof. Note first that all simple n—seines and all split n—seines

are 3—connected . That is , for any two nodes p and q of such a graph

S, p and q are not separated by any pair of nodes of S. To prove

this , consider separately the cases in which {p,q) intersects the

diametral pair {x,y}, in which p and q are intermediate nodes of

the same path A , B or C , and in which p and q are intermediate

nodes of different paths. Consider also , for sj-~ it n— seines , the case

in which the extra node z is p or q. In each case the argument is

straightforward.

To complete the proof , consider an arbitrar y diametral pair {x,y}

in a 3—connected graph C of diameter d. F u c h  nath joining x and

y has at least d—l intermediate nodes , and sinc~ x arid y are

j o ined  by three in d e p e n d e n t  paths  there  are at iea.st 3d—l nodes in

all. If, in add i t ion , d is even and G is 3---valent then there are P

at least 3d nodes because odd—va lent graphs are of even order .  But in

view of the preceding paragraph , a minimum (c~,3,~~)—graph has at most

3d—i nodes when d is odd and at most 3d i odcs ~-hen d is even. The

desired conclusion follow s readily . ~

Because of 1.1 , the minimum (d,3,3)—grnrlis at e henceforth called

(d — 1)—se~ r~es. Thus all (d—l)—seine s are s i : n p ] i  when d is odd ,

and are simp le or split when d. is even .  / ion t:nd n— sein~ is an H

ordered triple (S,x ,y), where S is an n— seine and (x ,y ) is an

ordered diametral pair of nodes of S. Two ~~‘n~~- - 1 n—seines (~~,x ,y)

and (S* ,x* ,y*) are isomorphic if there is a graph u~omorphism of S

onto ~~ that carries x and y on~ o x~ aii i y *

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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1.3

respectively . (When S is a l—se i.ne or 2— seine , S has at least

two diametral pairs and hence yields at least four distinct rooted

se ines , but all rooted seines associated with S are isomorphic.)

In all that follows , the distinction between root-ed seines and unrooted

seines is essential. A seine not specifically described as rooted is

assumed to be unrooted.

~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~
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2.1

2.  THE NUMBER OF ROOTED (d - l)—SEINE~ FOR ODD d

Hencefor th  there is the

STANDING HYPOTHESIS:  d = n + 1, where n is an even in teger  > 2.

Let Q denote  the i n f i n i t e  graph formed f r , .m threee paths

(x ,p 11,p 1 2, . . . ) ,  ( x ,p 21,p 2 2 , . . . )  and (x ,p 31, r 3 2 , . . . )  which  are

pairwise node—dis jo in t  except  for  having the same in i t ia l  node x .

For each positive integer k let denote  the subgraph of Q

spanned by {x } u (U ~ P1) ,  where = {p 11,i ~~1, ~~31}. A k - s t a r t

is a graph T formed by adding to the “dp es  of a m a t c h i n g  N

such tha t

(a )  each member of I~ j o ins  two points  ~ f t~~P 1 not j o ined  in

k—l . -(b) each point of 
~ 

is covered by , and

Cc) 6T(x ,p lk) 
= 6 T ( x ,p 2k ) = 6T(x ,P 3k) 

= 1~, where 6 is the usual

graph—theoretic distance.

A consequence of (a) and (c) is that if {p91 ~~~~~~~~~ 
I ~ N then 9~ ~ m

— and I i  
— j~ < 1. This and the following fuct ar-~ used frequently

without  exp l i c i t  r e f e r ence .

2.1  PROPOSITION Every automorphism of a ~:--start  T carr ies

x onto x and carries P. onto P. for I < < 1<.1 1 — - -—

Proof. Note that is the set of all n ’dus of T—valence < 2,

and that for 1 < I < k; P. is the set of al] nodes at T—distance

k - i  from 1’k~ ~

When T is a k—start , a node p E 

~k ~s r n a t c h e d  or unmatched

in T according as its T—valence is 2 or 1. ~h nd set of T is

the set of all r E Cl ,2,3} such that 
~kr 

Is matched In T. The

cardinality p (T) of T’s end set is call~-d f lu- reach of T. The

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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2.2

end group of T is the group of all permutation s it o~ (1 ,2,3)

such that T admits an automorphism (a graph isomorphism of T onto

T) carr ying 
~kr 

onto 
~kii(r) 

for r c {l ,2,3). The cardinality

0(T) of T’s end group is called the style of T . Plainly

a(T) E (1,2 ,3, 6) , for the end group is a sut’group of the symmetric

group 33. Figure 3 shows all isomorphism type s of k—starts for

k < 3. Under each example the pair p(T), e(T) is shown .

(F igure  3 is to be i nser t e d  he re)

Fig.  3: Examples of all isomorphism types of k — s t a r t s  for  k < 3

For each pair of integers r c (0,1,2,3) and s € {l,2,3,6} ,

let g~5(k) denote the number of isomorphism types of k—starts of

reach r and style s. Note that the number of Isomorphism types of

rooted n—seii’es is

(g 31 + g
32 

+ g 33 + g 36
) ( n ) .

We now proceed by recursion to determine th~ varIous functions °rs

2.2 PROPOSITION Of the sixteen functions -
,, for  r c (0,1,2 ,3)

and s E (1,2,3,6 ) ,  ~~~~~~~~~ ~~ 
go1~ 

g0~, 
~~~~ r21, ~22~ ~~~ 

~~~~~~~~ g36

are identically zero.

Proof. To see that g23 = g26 = 0 , no 1~~ t-in~t if (1,2) is the

end set of a k—start T then each automorph ism of T is the identity

~~ 
p

1 
or Interch;- inges 

~kl 
and p12 .

— That g12 
= g13 = g16 

= 0 follows from vrl~ ncy and distance

- 
‘ considerations. Suppose , for example , that (ii is the end set of

a k—start T and 
~~(k— l)2’~ k1~ 

is an edge of T. Then the

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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2.3

T—valence of is 2 while that of 
~k2 

and 
~k3 is 1. Also ,

the T—distance from is 2 for 
~k2 

and > 2 for 
~k3 

Hence

each automorphism of T Is the identity on

That g02 = g03 
= g32 

= g33 = 0 follows from an induc tion that

is based on the initial conditions

(a) g06(l) 
= g22 (l) = 1, g~ 5 (l) = 0 for all (r,s ) i {( 0,6) ,(2 ,2))

in conjunction with the observation that for all Ic > 1,

(b) g0 (k + 1) = g35
(k) for all s , and

Cc ) g35(k + 1) = g03 ( k ) for al l s ~ 1.

To establish (b), use 2.1 to verify that if a k-fl-tart of reach 3 and

a (k+l)—start of reach 0 are associated with the sante matching M

then they have the same end group . For Cc), consider an arbitrary

(k+l)—start T of reach 3 and style s ~ 1, and let ~ be an

automorphism of T that is not the identity Ofl ~~~~ If

(k+l)l ”~(k+l)2~ 
is an edge of T then ~ carries 

~(k+l)3 
on to

itself and interchanges 
~(k+l)l 

and 
~(k+l)2’ 

whence ~ i:-iterchanges

~k1 
and 

~k2 
A contradiction then arises from the fact that precisely

one of 
~kl 

and 
~k2 

is joined to 
~ (k÷ l )3~ 

It follows that no edge

of T joins two points of 
~k+l’ 

whence T is formed from a k—start

T ’ of reach 0 by adding , for each p E F1 ,  a node q
~ 

that is not

joined to p but is joined to both members of P1 “ {p } .  Then T

and T’ have the same end group , and Cc ) follows. ~

The order of the g~5
t s in the next result is chosen so as to

simplify a later computation.

2.3 PROPOSITION For each positive integer Ic let the column vec to r

Z
k 

be the trans pose of

H - - - - - -  
~~~~~~~~~~~~~~~~~~~~ 
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Then 5 k+l 
= Az k whe re A is the matrix

r : 

:

Proof .  The f i r s t  and th i rd  rows are ,icst~~i ~ed by Cb) above ,

the sixth by (c). For the fourth row , note th~it  ~ach ( k + l ) — s t a r t  T

of reach 1 is also of style 1 by 2.2 , an d T h~ s as subgraj h o

k—start of reach 2. Each k—start of reach 2 and style 1 <resp. 2>

yields 2 <resp. 1> isomorphism types of (k+l)—starts of reach 1.

To justify the fifth row of A , note th’ t g 11 (k+1) <resp. 2g01(k)>

is the number of isomorphis::; types of (k+l)--sta~ ts of reach 3 and

style 1 in vhich there is <resp. is not> ai edge joining two nodes

of 
~k+l~ 

Then use the fact , provided by A ’ s fourth row , tha t

= 2g21(1-:) + g22
(k ) .

For the second and seven th  r~ows of A , c~ ns id :, r’ an arb~ trary

C k + l ) — s t a r t  T of reach 2 .  If’ two nodes of are jo ined  in T

then T has as subgraph  a k — s t a r t  T ’ of r~ ach 3 and it foLLows

w i t h  the aid of 2.2 that the style of T’ i s 1 •:resp. 6> when  t ha t

of T is 1 < r e s p .  2 > .  Fu r the r , each k—st :u ’t  of r each  3 and style

1 <resp .  6> y ie lds  3 < r e sp .  1> !somor ’phis ~: 
~~~~~ 

of ( k + 1) — s t a r t s  of

reach 2 and s ty l e  1 < r e s p .  2> . If no edge o f T J o i n s two nodes of
~
k+l then T has as subgraph a k — s t a r t  T ’ ~~f veach 1 who s o

s ty le  ts also 1 by 2 . 1 .  Each such T ’ y i e l ds  2 < resp . 1’ ~son;o rph ism

types of (k+l)—starts of reach 2 and s ty l e  ~ ‘u ~ s~’ . 2> .

- ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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2.5

2.~4 THEOREM Let ~ = (13 - /T~3) / 2 , r~ = ( 13 + - 2 ~ )/2 , and for
each positive integer j  let

= _ _ _ _ _ _  = 2~~~ V (~~\ 1 j - i 12~~( i— l ) / 2
— L1 odd i�j ’i’ - -

Then the fu n c t i o n s  g that are not identically 0 are as tabulated

below.

k = 2 .
3

g01 (~~) 
~ (-l  + 3~~ ) - 5

~ j - l

g06 (k )

g11(k)  ~ (i  + 3~~ ) 
— 

~~~~~ 
+ 10

~j-2 
0

0 ~ (-1 ~ 15 c . )  - 31
~j l  

+ 20
~~. 2 H

~~~~ 0 
~(l + ~~~ - 23

~j + 72
~~~~~-~~ 

- 
~~
°

~~~j - 2

g31(k)  ~~ -l ÷ - 5
~ j -1 0

g36 (k) 1 0

~~~~~~~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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2.6

Proof .  Let  A he the  r o r t r i x  of 2 . 2 .  A f lr s t  in spec t i on

show s  t h a t  0 is an e l L -enva lue of A wi  t h  a s soc i a t ed  ei f~~C i i —

vec t or (0 , 2 , 0 , 0 , 0 , 0 , _ 1) t
• When A ~ 0 t h e  m a t r i x  A - XI

is r o w — e q u i v a l e n t  to the m a t r i x

— x . . . I •

- — X 1 1

• . —A • 1

• l—A ~ 1 2A

1 2-A z 1 2A

L : : : ~
Hence 1 and —1 are e igenvalues  of ~~~~, and  a s s o c i a t e d  eiren—

vectors turn out to be (2 ,3,_1 ,1,_1 ,2,_1)
t 

and

r e s p e c t iv e ly . hen  ~2 
~o , 1, 23 the m a t r ~ x N is

to the upp er  t r i a ngu l a r  m a t r i x  whose  f i rs t  on’ rows are those

of ~ an d  whose  lower r i gh t  ‘~~3 r i n ’~’ i

(l-A 2 )(2-A 2 ) -A 2 -- di ’

- 1—A 2

• A n -i ~\ 2 ’ L O

J
It f o l l o ws  t h a t  when  A £ ( —

~~~~~~~~ ,_ T ~~~,fl } ,  X is an e igenva lue

of A w i t h  as soc ia t ed  e ig en v c c t or

2 ~(0 , ~ 2’ A — ’ — 2A , A~~, 1 , ~~k — 4 4 ) ,
A

L .
~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 



Pr - 
- ~~~~~~~~ - . .~~~~

2.7

where = ~2 
- l2T + 8.

There is now enough information to diagorial i ze A by means

of a similarity trans formation , but it It; ‘ c - :nu ta t ional ly

more convenient to work with A 2 instead .

The e igenvalues  of A 2 are 0 , 1 , ~ and 
~~~~, 

and fu r

all but  the  first of these an independent, s-s~ r of eioenvectors

is avai lable . Replac ing  each of these  pairs w i t h  half  of its

sum and half of its difference , thereby Th1 c ’ning other inde—

pendent eigenvectors for the eigenvalue 1n nuestion , and

arranging the seven ei genvectors  in an or’ ir-r t ha t  is co n v cr J e n t

for subsequent computa t ion , y ie lds  the m n t r~~x

2 - - • - •

3 2 •

— l • •

B ~~-2E~ ~~~~~~~ 1

• • • • ~~ ‘ 2 —l

. - .

—l -1 5~
_
~ 

. . .

lie columns of B are elgenvectors of A associatod w i t h

the respective eigenvalues ~~~~~~~~~~~~~ ~Pi a standard rcsu]t

on d i n -  H n u l i z a t i o n  of m a t r i c e s ,

A 2 
= BDB 1

o e r e

For each integer j > 0 ,

~ 

~~~~~~~~~~~~~~~ 

- 

-— -~~~~~~~~~~



2.8

z 2~~~1 (A 2 )~~z 1 = BD~B~~ z1.

Le t x = B 1z 1, so tha t  Bx = z1. To compute x , recall that

z1 
= (1 1 0 0 0 0 0 ) t and use row operations to transform the

matrix (B ,z1) into following:

• ]- ~~~~~~ 14
1

• . - • • rI

1_
• (2

• . • - ~~~ _;
(~~~ _~~~ ) • .

• • • • . 1 •

• n (ri—~ )

Back substitution then shows that

n — 3  
_ _ _ _ _x - 

~2’ ~ 2~~(~ 
— 

~~~~~~~ 

0 , fl~ 0 , 2~~( ç  -

where the value of the second entry 
~
i is it - material for our

• purpose. It follows that

D 3 x = ~(i , 0, ~j-l ~~~~~~~~~~~~~~~~ 0, 0, 0 , . h-l 1:

whence the succes s ive  ent r ies  of z 2~~~1 PL are

g
06

(2j  + 1) = 1,

+ 1) = + 2 (n - )[~~~
j
~~~~ - 3 )  - ~~~J 1 (~ - 8 ) ]

+ 1) _
~~~~~~ + 2(n ~ 

- 3) - ‘
-
1~~~~~~~~~ 

3) ] ,

g11(2j + 1) = g
31
(2j + 1) = g36 (2j + 1) = n . and

~~L J:~~~ _.~ ~~~~~ ~~
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+ 1) = - + 2(n ~)[(5~ 
- 4)~

i_1
( - 3) - (5rI - 4)fl~~~(~ - 3)].

By simple manipulation and use of the  fact that ~n = 10,

the formulae for ~~5 (2 J + 1) stated in 2.LI are derived from

the ones just obtained. Note , for example , that

~ [~,~~J~l( - 3) - ~~~~~ 
- 3) 1 =

~ ~[(n
2-l2~~8)n~~~ - (~

2 12~+8)~
3_ l

] - ~1[(n
2
~l2n+8)n

3 2 
- (~

2_l2~+8)~
J_ 2

]

= 

~~~~~~~~~~~~~~~ 
- 10 j 2

~j-l~
8
~j-2~ 

= 3
~j+l 

- + - 80Cj_ 2

The formu lae for g~5(2j ) follow from the  formulae for ~~5C2J—l )

and the fact that z2. = Az 2. 1. U

2.5 THEOREM . ~~~~ ven n > 2 the number of isomorphism types of

rooted n—seines is ~-(—l + 3E~~12
) —

Proof. Since g32 = g 33 
= 0 , the number  in quest ion is

g31Cn) 
+ g36 (n). Use 2 .LI. U

By 2 . 5  there are l~4 t ypes  of rooted 14-seines . The 8 types

(S,x ,y) shown in Figure LI are reversible , meaning that CS ,x ,y) Is

• isomorphic with (S,y,x). The 3 types shown in Figure 5 are

nonreversible. The remaining 3 nonrever s ib le  types  are of the

form (S,y,x)  where ( S,x ,y) is as in Figure 5.

(F i g u r e  4 is to be i n s e r te d  J t e r e)
Fig. LI : The eight types of reversible rooted LI—se ine (S,x ,y)

(F i gure  5 is to be i ns e r i u ’d h ere)

-
• Fig. 5: Three of the six types of nonrevers~ h1e rooted LI—seine (S,x ,y)

7~~~~~
_ 
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2 . 1 0

A link Is any of the five graphs shown In Figure 6. In eac h link

L, the six nodes are partitioned Into a set Lw of three white nodes

and a set Lb of three black nodes. When G Is a link and p a

node of G, or G is a k—start and p € 

~ k ’ the node p Is matched

if its G—valence is 2; otherwise the G—valence of p Is 1 and p

is unmatched. Each reversible rooted n—seine can be formed, for some

r between 0 and 3, by amalgamating a link L having r unmatched

white nodes with two copies , T
~ 

and Tb, of an (n/2)-start of

reach r. In the amalgamation , L’ s unmatched white <resp. black>

nodes are Identified with the matched nodes of T
~
<resp. Tb > and L’s

matched white <resp. black> nodes are identified with the unmatched H

nodes of T
~
<resp. Tb> . In Figure LI , five of the examples use the

link L
5; 

the last examples on the successive rows use L3, L3 and

respectively .

(Fi gure 6’ is to be inser ted h e r e)

L 2 L LLI L5

Fig. 6: The five links

• 2.6 THEOREM . For even n~~ LI the number of isomorphism types of

reversible rooted n—seines is

+ 2i~~~) - LI L I~~~ 1 + 30
~j-2 

when n = LI . and

1 + ~( 3 c ~~1 - l3~~~) + 5
~ j - l  when r4 = + 2 .

Proof. For each link L having r unrotch~~1 white nodes , and

• for each (n/2)—start T of reach r and specified style , the

number of isomorphism types of reversible rented n—seines that can

be formed by amalgamating L with two copies Or T is shown In the

table of Figure 7.

— -

~

T L---

~

--- •-—
~~~~~~~

• -

_.g~~~~~~~~ --~~ — -
~~ 
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[ Link number Reach of start Style of start Number of types

1 0 1 1

1 0 6 1

2 1 1 1

3 1 1 2

24 2 1 2

24 2 2 1

5 3 1 LI

5 3 6 1

FIg. 7: Number of types of reversible rooted n-seines yielded by

certain amalgamations

Ju~tification of the table is facilitated by a more formal

description of the amalgamation process for forming reversible rooted

n—selnes . For each link L, let A(L) denote the set of all auto—

morphisms a of L such that aL
~ 

Lb . For each k—start T and

each ~ E ACL), let W(T,a) denote the set of all one—to—one

mappings U): 

~k L~ such that

(a) w carries matched <resp’. unmatched> nodes of onto

unmatched <resp. matched> nodes of L~ , and

( b )  the mapping w~
ia2w~ ~k ~k 

belongs to the end group of T.

Note that If W(T,a) # 0 then by (a) the reach of T is equal to the

number of unmatched white nodes of L. For T , L , a and (A) as

described,with 2k = n , the revers ib le roo t-ed C2k)—seine

R = R(T ,L,ct,w) is constructed in the manner set forth in the next

paragraph .

JT~ iL~ ~~~~~~~~~~~~~~~~~~~~~~~ —~~~ -~~~~~ -~~~
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2.12

Let ~ be an isomorphism of T onto a graph T’ that is

node-disjoint from both T and L. Let ~ be an automorphism of

T whose restriction to is U) 1a
2w . Let x ’ = cf (x), P~ ~~~~

and def ine the mapping 8: P~ ~~ 
Lb by 8 = awp~~~~~~. The graphs

• T,L and T’ are amalgamated to form an n-seine S by identifying,

as an individual node of 3, each of the pairs {p ,w(p)} for p €

- 
• 

and each of the pairs {p’,8(p’) }  for p T 
~ P~ . To see that the

rooted n—seine R = (S ,x,x ’) is reversible , let ~p(q) = 4(p (q)) for

each node q of T and ~(q’) = f~~~(q’) for each node q ’ of T’.

Pla inly ~p is an automorphlsm of T u T’ that interchanges x and

x ’ . By means of the identifications , i~ is defined also on the nodes

of L. On L
~
, i~ = 8~pU)~~, which is equal to a because

8 = by definition . And since = a2, on Lb it is

true that
— —l —1 —l —l —1 —l -l 2 —l8 = w t ~i ~pw a ui~iw a a a  a .

Thus ~
p is an automorphism of S and an i somorphism of (S , x ,x ’)

onto (S ,x ’ ,x ) .  A s t r a igh t fo rward  argument shows that  every

reversible rooted n—seine  can be cons t ruc t ed  in th is  way .
— In j u s t i f y i n g  the rows of the table in Figure 7, let the nodes

of the  k—start T that belong to be d e n ot e d  by 1, 2 and 3. It

may be assumed wi thou t  loss of genera l i ty  tha t  t h e  matched  members of

have smaller Indices  than the unmatched  members , and then because

• of the symmetries of L it may be assumed t h a t .  the  i d e n t i f i c a t i o n  of

wi th  those  of L
~ 

is as shown in Figure 8.

(Figure  8 is to be Inser ted  h e r e )

Fig.  8:  Iden t I f i ca t i on  of nodes of with white nodes of link

- - - • • , • - - -•-—-•- — —••-- —--- - - — - : -•—- •— -
~~
•-  ~~~~~~~~~ — - - - -—— -- ---•r~~

-— - -— 
~~~~~~~~~~~~~~~~~~~~~~~~~~
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2.13

Now recall that a is an automorphism of L for which

L
~ 

= Lb 3  whence a interchanges the sets L~1 and Lb . Consider

first the case in which T is of style 1, whence a2 is the

identity. In the case of L1 this fixes a and hence (for a given

U) and ~) also fixes 8, so that only one typ e of R (T,L,a,w)

emerges. In the case of L2 there are two possibilities for a and

hence for B, but the two pairs of identifications (w ,8) are

equivalent under the automorphism group of L2 and thus only one

ty pe of R emerges . In t he case of L
3 

or L LI , a is fixed and

hence 8 is fixed but (as shown In Figure 8) there are two essentially

~ifferent possibilities for w; thus in each case two types  of R

emerge . In the case of L
5 

the four possibilities for a lead to

the four possibilities for (U),8) indicated in Figure 9 and hence

to four different types of R.

(Figure  9 is to be inserted here)

Fig. 9: Different identification pairs (w , 8)  ‘v hen L Is L5
• and T Is of s ty le  1

Only the second , sixth and eighth rows of t h e  t ab le  remaia .  The

number of possibilities for a is 3, 1 and 6 respectively. However ,

because of the nature of T’s and groups , in each case only a single

type of R emerges.

From the t ab le  it fo l lows  tha t  the  to ta l  t i u mb er  of r eve r s ib le

rooted n — s e i n ~ s is

~~~ + g06 + 3g1 1 + 2g 21 + g 22 + 14g
31 

+ g 3~~) ( n / 2 ) ,

whence the  s t a ted  formulae  follow with the ~H of 2.24 . fl

/ --  

~~~~~~~~~~~~~~~_________________________ I — — — —•--•••——.‘—•—•—-— — .—-—.— •• — ‘--
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3 . 1

3. THE NUMBER OF UNROOTED ( a  - 1)-SEINE S FOR ODD d

This section also comes under the

STANDING HYPOTHE SIS: d = n + 1, where n is an even integer > 2.

Each diametral pair {x,y} of nodes of an n—seine S is joined

by at least one set of three independent paths of length d , and for

a given {x ,y} there may be more than one such set of paths. It is

of ten  conven ien t to pick a part icu lar set A = (x ,a1,. - .

B = (x ,b1,. . ~~bn~
y )
~ 

C = (x ,c1,.. ~~~~~~ and carry on the discussion

with respect to it. Note that , in the matching i nvolved in the

definItion of a simple n—seine , a1 is matched w i t h  one of the six

points b~~ 1, b
~~
, b

~ ÷1, 
C11, c ., c 1~~1, there being two exclusions

when i is 1 or n. This fact is used frequently without explicit

re ference.

Each diametral node x of an n—seine belongs to a unique

diametral pair {x ,y} , but there may be d i ame t ral  pairs  d i s j o i n t  from

{x ,y}. An n—seine with more than one diame~ rsil pai r  is called

ambiguous. The first 2—seine in Figure 2 has f o u r  d iamet ra l  pairs .

It is In that respect an anomaly, as the following result shows .

3.1 THEOREM If S Is an ambiguous n—seine for even n > LI , there

are cliques {x,x ’,w } an d {y ,y ’,z} in S such that

~s ,y) _ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

= n+l , 6s(W ,Z )  = - 1,

and {x ,y} and {x ’ ,y ’} are the  only diametral pa i r s  c- f’ S.

Proo f. Le t {x ,y } an d {x ’ ,y ’) be distin ct diametral j-airs of

S and let A = (x ,a1,.. .,a~~, y ) ,  B = (x ,b1,. - - ,1
1 ,y) and

C = (x ,c~~,. - ., c~~, y)  be three independent pa ths t rom x to y. Since
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3 . 2

= d and each pair of the paths forms a circuit of length

2d , it may be assume d without los s of genera lity tha t x ’ = aj and

= ck with j + k = d and 1 < j  < k < n. If a~ is matched with

Cr the sequence (a j~ cr,cr÷i,.. . ,c~~) is a path of length < d , and 
• 

-

the situation is similar if Ck is matched with a5 . Hence a~ is

matched with b and c with b , wherer k s

Ir — s i  + 2 > d — 2 .

It follows that r = 1 and s = n , whence j  is 1 or 2.

If j  = 2 , {a 2,b1) Is an edge , whence a1 is not matched with

for if it were there would be no admissible mate for c1. Thus

a1 is matched with c,~ for t € {1,2}, whence (with n > L I )  t < d — 2

and (a 2,a1,c~~, .  - . ,cd 2 ) is a path of length < d from x ’ to y ’ .

Since this is contradictory , it follows that 1 = 1. That Is ,

x ’ = a~ , y ’ = c , an d {a 1,b1}, {c ,b }  are ed ges of S. With w = b 1
and z = ~~~ Ix ,x ’,w) and {y,y ’,z} are the desired cliques. Note

also, for future ref erenc e , that a2 Is matched with C 1, for

otherwise a2 is adjacent to {b2,b 3, c2,c3} and a pa~ ii of length < d

from x ’ to y ’ is created . Similarly, Cr~~ 
is matched with a~~.

Thus S is as shown in Figure 1-0. Further , all a-lditiona l edges joining

C to A have positive slope (in terms of 4 h e  g~ metric representation

cho s e n) ,  while those joining B to C or A ha-Te positive slope or

are vertical .

(Figure 10 is to be inserted here)

Fig. 10: Labeled representation of an a m b ir u o u s  i—seine for n > LI

At this point a 3ertain relationship of (x ’ ,y ’} to {x ,y} has

been es tabl ished . A th i rd  d iametra l  pair {‘~‘ ,y ” }  would bear th ir -  

•~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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same relationship to both {x ,y} and ~x ’,y ’}, whence

{x ” ,y ”} = {w ,z} for (with n > LI) w and z are the only two nodes

adjacent to both {x,y} and ~x ’,y ’}. Since {w,z} is not diametral

it follows that {x,y} and Cx ’ ,y ’} are the only diametral pairs . ~

It follows from 3.1 that the number of isomorphism types of rooted

n—seine that arise from a given ambiguous n—seine is at most LI. It is

1 for each of the 2—seines , 2 for the upper right 24-seine of Figure LI

(which is ambiguous and is isomorphic to the one on its left), and LI

for the ambiguous 8—seine of Figure 11. In order to use 2.5 and 2.6

in counting the total number of n—seines we must determine , for each

t € {l,2,3,LI }, how many types of ambiguous n—seine yield precisely

t types of rooted n—seine . That is done by first counting the number

of types of rooted ambiguous n—seines and then taking symmetries into

account .

(Figure 11 is to be ins ~rted here)

Fig. 11: An ambiguous 8—seine that yields LI different types of rooted

8—se ines

For a rooted n—seine R = (S,x ,y) and for 1 < I < n , let

denote the set of all nodes v of S such that 6
5(x,y) = i; the

members of R1 are said to be of’ level i. Note  that 1R 1 1 = 3 for

each i, an d eac h R
~ 

is carried onto itsclf ky each automorphism of

H. For each interval I of integers in [l ,n], let R1 
= UjE I F

~~
. An

9.—block of R, or block of length 9., is an int i’val I c [l ,n] such

that

(a) ~i I  = L ,

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

=- 
~~~~~

• -

~~~
—---

~~~ ~~~~~ 

• •
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(b) for each p € H1, at least two of the three S—neighbors of

p also belong to H1, and

(c) I is minimal wi th  respect  to ( b ) .

Plainly each block—length is even. The specification of R is

the sequence H = (h1,. - .,hb ) of half—lengths of the successive blocks .

Thus ~~~1h . 
= n/2. For the 8—seine S of Fl~-ure 10, the specification

of (S ,x ,y) is (2,1,1) and of (S,x ’ ,y ’) is (1,3).

A rooted n—seine R = (S,x ,y) Is rigid if  S admits only one set

of three independent paths from x to y. A sw~ t c h  is a 2—bloc k I

such that for each i c I, no edge of S )oins two points of F1;

equivalently , each node In either of the tw~ lr-vnls represented in R~

has two neighbors in the other level. A cr - s s is a set of four nodes

that span a circuit whose nodes alternate bc1-~-een two leve s. The

nonrigid rooted 10—seine shown below has a switch in levels 3-~ and a

cross in levels 8—9 . The 14—circuit in levels ‘~— 7 does not correspond

to a cross because its nodes do not alternate bet~ een two levels.

(Figure 12 is to he ins~ rted here)

Fig. 12: A nonrigid rooted 10—seine having one switch and one cross

Let us say that a rooted n—seine R = (S .~~,y) is canonically

labeled when each node other than x or y han been assigned a unique

label from the set U
~~~~

a
~
,b±,cj} in such a ~--av that

A = (x ,a1,. - . ,a ,y ), B = (x ,b1,. . - ,b~~,y) and C = (x ,c1,. - - ~cn~
y ) are

independent paths from x to y and {a1,b~~), {c~~,a2) are edges of S.

L _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- — - -~~~~~-- -~~~~~~~~ —--~~~~~~~~~~~~~~~~~~~~ -- -~~~~~~~~~
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3 . 5

3 . 2  PR OPOSITI ON Suppose that  R is  a rooted n—se ine  (S , x , y ) .  The n

( a )  H a d mit s  a canonical  label ing if and only if F does not

have a swi t ch  in levels  1—2;

(b )  H Is r i g i d  if and only if R has no swi tches  and no crosses;

( c )  if R is rigid then R admits  a unique canonical labeling;

(d) if F is rigid then the identity is the only automorphism

of  H .

Proof .  Asse r t i ons  ( a )  — (c) are almost obvious and are l e f t  to the

reader . For (d), let H be canonically labeled and note that

{x ,a1,b1} is the unique 3—clique containing x , whence each automorphism

of R carries the set {a1,b1} onto itself. But then c1 is car r ied

onto itself because levels are preserved , an d a2 is carried onto

itself because it is the only node in level 2 t h s t  has two neighbors in

ieve~ 1. When F is rigid this implies A is carried onto A and

C onto  ~~~, whence B is carried onto B and the automorphism is

the identity. ~

3 . 3  PROPOSITION If h 1,. - - ,hb are pos i t i ve  in tegers  whose sum is

n/2 , the  number of i somorphism ~~pes of rigid rooted n—seines wJ~~
b — l  n — b — l

~r o i ~~i o t uu . (h l , . . . , h b ) is 3 2

Proof. It follows’ from 3.2 that two rigid rooted n—seines are

isomorphic if and only if the correspondence of t h e i r  n o d e — s e t s  given

by the canon cal labelings is an isomorphism . T i us it remains only to

d e t e r m i ne the  r~umb er  of natchiro- s r•~ which  r’ r’ c of ’ the sort involved

in the d finition of’ an n—seine , huve neith~ r sw .~ tch nor cross , match

a1 w i t h  b 1 an~ w i t h  ~~~ gener  ~ h l - ~~ k s accord ing  to

the specif ication (h l,.. .h b
) .

L - -  •~~~~••~~~~~~~~~~::~~~~~~~~~~~~~~~~~~ • ~~~~~ • •~~~~~~~~~~~~~~~~~~
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If h~ = 1 the part of the r— seine corresponding to the first

block is already de te rmined .  If h . > 1 there  are 2 ways of choosing

the two edges of D~ that join F2 to R3, then 2 ways of choosing

the single edge of M tha t  jo ins  F
3 

to - - •
, and hence a to ta l

2h1— 2of 2 ways  of comple t ing  the f i r s t  b l o c k .  For each subsequent

block of length 2h1, there are 6 ways of choosing the single edge

of M that joins the first two levels of the block and then (as wher .

2h . -l
I = 1) 2 ways of completing the block. Thus the total number of

r igid rooted n— s e ln e s  w i th  s p e c i f i c a t i o n  (h 1, . - ., hb ) is

2~ b (h l)
6b — l 2 1 ~ = 3b —1 2n — b - l  

9

3 . 1 4  PROPOSITION Except for the first 2—seine , each rooted  a~:bip :ucus

n — s e i n e  is rigid. If n > LI and h 1, - . - ,h b are positive interers

wnos~ sum is  n/2 there  is a un ique isomorphism t ype of roo ted

ambiguous n—seine with specification (h1,. . - , h~~) .

Proof. Consider a rooted ambiguous n—seine F = (S , x , y )  wi th

n > LI, let (x ’ ,y ’) be as in 3.l , and note  th a t  by the proof of 3.1

H admits a canonical labeling in which x ’ = a1 and y ’ = cn . To

show F is rigid , refer to Figure 9 and no te  t h a t  if there  is a s w i t c h

or cross then ~5(x ’ ,y ’ )  < d .

The proof of 3 . 1 4  is completed by working through the successive

levels to show that the remaining edges of ~-1 are uniquely determined

by the specification (h 1, . - , h b ) in c o n j un c c i c n  wi th  the fac t  tha t

t5~, ( x t ,y t )  = d.  Indeed , the  fo l lowing p r o p e r t in s  of F can be ve r i f i ed

by induc t ion  on i :

- — - - --
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3 .7

a block begins at level i if rld only if {~~~,b1} is an edge ;

a block ends at level i if arid only if {b 1,c 1} is an ed ge;

for each odd i, {c1 , a~ +1
} is an edge ;

for each even i that  does not end a b lock . {b ~~,a~ +1
} and

{c 1,b1÷1 } are edges. 9

The next  resul t  could also have been p r o v e d  by a recurs ive

procedure  similar to the one used in proving 2 . 5 .

3 5  THE oRE ~: The t o t a l  number  of isomor~-h i.u tyjes of ~-~ -d rooted

- . ( n — 2 ) / 2  ( n — 2 ) / 2  -r.—seines is 10 ; of these , 2 are anosguos: .

Proof. Let m = n/2 and recall that (
~~~~~) is the number of

ordered partitions of m into b positive in t egers. By 3 . 3  the

number of rigid rooted n—seines is

2m— 2 m f~r— l \ ~
. 3~ b—l  

— 
2 m — 2  3\ m—l —2 

~b= 1 \ b_ l 1~~~/ — 2 ( 1  + ~~, -

and by 3 . 1 4  t he  number  of rooted amb ig u o u s  n - s e i n e  a is

~m ( m—l \ —

b=l ’b — l 1 — -

For each finite sequence H = (h , .  - - ~~~~~~~~~~ 

1 et H~ de: c-te the

reverse sequence (hb,...,hl). If H is tn~ esifi cat~ on of (S,x ,y)

then  H~ is the  s p e c i f i c a t i o n  of ‘S , y , x ) .  ini roo ted  n— s e i n e  S

is called symmet r i c  if it admi t s  an au t on o r ;  ~~n n t e r c h au ~~in g the

two nodes of a diametral pair. If {x ,y} i s th~- iT - air in q u e s t i o n

and H is the  s p e c i f i c a t i o n  of ( S , x , y )  t h e n  = H.  Each

unambiguou s n—seine S yields 1 or 2 isomo t i  n types of rooted

n—seines according as S is or is not symmetric. However , for

- -  —-‘-—•.
-
~~i , - -  - - — ---.--

-- 
~~

-
~~~~
- ‘ .~~
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ambiguous n—seines the situation is more complicated and is elucisated

wi th  the aid of some addi t ional  operat ions  on sequences.

For each finite sequence H of positive integers let Ha dens - to

the sequence obtained frou H by doing the f’nllesing:

replace each maximal segment of l’s in Ii by —r , where r is the

number of l~ s in the segment ;

insert a 0 between each pair of consecutive entries > 1.

For example , if

H = (1,1,1,7,2,1,3, 1,1,14 ,5)

then  Ha 
= ( — 3 , 7 , 0 , 2 ,—l ,3 , — 2 , LI ,O , 5 ) .

For each f i n i t e  sequence K of in tegers  let K~ be ob ta ined  f rom K

by the s imul taneous  replacement  of each entry  k of K as fol lows ,

• where s is the  number of ne ighbors  of the  e n t ry  in K —— that is ,

s = 0 if there  is only one entry , else s = 1 for the f i r s t  and las t

entr ies  and s = 2 for all intermediate e ntr i e s :

if k < 0 replace k by s —

If k > 2 replace  k by a segment of P — a l’s.

For example , if H and H°’ are as above then

H a8 = ( 14 ,1,1,1,1,1,2 ,3, 1,14 ,1,1 ,2,1.1,1,1),

Ha8a = ( L I ,— 5 , 2 , 0 ,3, -l , LI ,—2 , 2 , -~~) ,

and Ha~~ 8 = (1,1,1,7,2,1,3, 1,1,14 ,5) =

It can be proved directly, or as a corollary of 3 .6  below , that

1~a8a~ = H for  every f i n i t e  sequence H of i o s i t i v e  In tegers .

3 .6 PROPOSITIOh If B , x , y, x ’ an d y ’ are as  in 3.1 and H is

the specification of (S,x ,y) then  H°~ ii- the specification of

~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~
~-



rnr — _______ 
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- •

~~~

3.9

(S,x ’ ,y). In particular , the specification of (S,x ,y) starts with

1 if and only if the s p e c i f i c a t i o n  of (S ,x ’ ,y ’ )  does not s tar t  w i t h  1.

Proof. Let (S,x,y) and (S,x t ,y t ) he canonically labeled

using labels a~~, b 1 and c1 in the  f i r s t  case and labels aj ,  b~
and c in the second case. Then the pairs ct labels  a t tached  to the

— various nodes of S are those appearing In corresponding  pos i t ions  in

the following two lists:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

a1xc 1 cn 1cn,a1b1•• •bncn,ala2~~~
•5
~
Ycn .

The desired conc lus ion  is a consequence  of t h i s  cor respondence  in

conj unc t ion  w ith  the proper t ies  of (S , x , y )  l is ted  at the  end of

the  proof of 3. LI and the  analogous p rope r t i es  of (S ,x ’ ,y ’ ) .  B

3 7  PROPOSITION If S, x , y, x ’ and y ’ are as in 3.1 and H is

the specification of (S,x ,y) then exactly one o” the following

statements is true:

( a )  H ~ H~ � Has , S admi ts  no n o n t r i v i a l  c L c r T o r y h ~~s rT ;

( b )  I~~ = H , S admi t s  a u n i q u e  non t r i v i a l  auto n or ph ism , and it

interchanges x with y and x ’ w i th  y ’ ;

( c ) H~ Ha8, S admits a unique nontrivial au t - o m o r p h i s m ,  ui~J it

interchanges x wi t h y ’ and x ’ w i t h  y .

Proof. If (p,q} and {u,v} are diar n e ti - ol i-airs in S and

and n are automorphisrr.s of’ S that carry p -uto u , t h e n

is an automorphism of the  roo ted  n — s e i n e  (S , j , q ) ,  whence  ~ = a
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by 3 . -LI and 3.2c. It follows fr o m  3 .6 that no automorphism of S

carr ies x onto x ’ . Thus perhaps

there is an automorphism q of S that carries x onto y, or

there is an automorphism ip of S that carries x onto y ’ ,

but there is at most one such c~, at most one such i~~ , and there are

no other automorphisms of S except the identity. With the aid of

3 . 14 and 3.6 It follows that :

~ exists if and only if H~ H, and 4 actually interchanges x

with y and x ’ with  y ’ ;

~ exists if and only if H~ Ha8, and ~ actually interchanges

x with y ’ and x ’ with y;

~ and ~ do not both exist , because HaB ~ I-I . U

An unrooted n—seine S is called skew—symmetric if n > LI and

condition (c) is satisfied. (See Figures 13 and 114 .) By 3 .7 ,  no

n—seine is both symmetric and skew—symmetric .

(Figure 13 is to be inserted here)

(S,x ,y) is of specification (2) (S,x ’ ,y ’) is of specification (1 ,1)

Fig.  13: Two views of a symmetr ic  ~inhig uous L I — s e i n e

(Figure iLl is to be inserted here)

(S,x,y) is of specification (2,1) (S ,x ’ ,y ’) is of specification (1,2)

Fig. 114: Two views of a skew—symmetric ambiguous 6-seine

The following result sharpens the second I T u l; of 3 5 .

~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~----- -- - - -~~~~~~~~ --- - - - 
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3 .8 PRoPosITIo :-l If  y < re ap .  -y ’ . ‘y ” > is tie n-usher of rooted

ambiguous  i i— s e i n e s  for  w h i c h  t h e  sp c c i f i c a t ic r i  st a r t s  and ends  w i t h

a 1 <resp. starts but does not end w i th  a 1, n e I t h e r  s tr u t s  nor ends

wi th  a 1> , then  
~2 = = 1, -

~~~ = = -
~~~ 

= 0 , and for  all

n > 6 ,
(n—6 )/2

Proof. The initial conditions are obv ~~c’us- - Eros: th - ; second s-art

of 3.6, applied to ends as well as starts , c t~ 1 lows that y

when r; > LI . In v iew of the second part of 3.!~, the  folluwir.p -

— recursions are obvious: 
~

‘+2 
= + 

~~
“ ; 

~~~~~~~~~~~ 

= -
, + 2~~’ + ~~~~~~~ . m€

stated conclusions follow by induction . B

3.9 FROPS-5 T10 -: 
~~ 

6 n <rea p. 6~~> is the n ssr- ~: of roosed s amotrlc

n—seines fo r  w h i c h  the  speci  f i c a t i o n  s t a r t s  and c u d s  <resT . thor ’

starts nor ends> with 1, then 
~2 

= 1, ~~ 0 , and for’ all 5 > 14 ,

= = 2~~~~~~
l .

Proof. By 3 .7 and the second par t  of ~ . ( . S . = ‘ for all

n > LI. In view of 3.14, ón+LI = 
~~ 

+ ~~~~~~ . Use k o s t i e t . U

3.10 PROPOSITION If E < re ar - c ‘ > is the nw le i c f  i -  -t~— n - n

:vs:sctric n —s c  t o-s fo r which the c~ ecificat i C: ok irts <r ap - hoes

t o t start> with 1, then 
~2 

= = 0 , an S ‘ all n > U ,

0 whe t  n 0 s - h  LI
C c ’ = K

fl 
~~2Ln /LIJ-l 

i n 2 5~~~~ LI .

- - -— - - ——--~~~- - --——- - - . — - —
~~~

. 
_ _ -_ -

~~~1
_—-,’ ,.- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- _ _ _ _
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Proof. By 3 .6 , 
~n = C~~~’ for all n > U . To complete the

proof , note that C
2 

= £ 2 ’ = 0 , £ 14 = 0 , £ 5 1 , and use induction in

conjunction with the recursion C = C + C ’ . That c = C + C ’
n n n+14 n n

for all n > 8 is a consequence of the following property of the

operators p, a and 8

If the sequence H = (h 1,. - . , h b ) of pos i t i ve in tegers  s a t i s f i e s

the condition that H~ = Ha8 then the same cot i lition is satisfied by

the sequence (l,h1,. ..  ,hb l , h b + l ) ;  when P > 2 and h 1 = 1 the

condition is satisfied also by the sequence (h ?,...,hb l ,hb
_i). U

3.11 THEOREI: 
~~~~~~ 

4 n ’ ~~ 
and denote the respective numbers of

ambiguous n—s e i l : e s , of s y m m e t r i c  ambiguous  n — s e l n e s , and of skew

symmetric ambiguous n— seines . Then 
~2 

= 2 — = ~) 14 = 2 ,

and

for all even n > Li 
~ 

= 2[n/14J-l

[n /LIJ-1 . -for  all even n > LI , o. n = 0 or 2 accord ing  as n = 0 or

2 mod 14 ,

for all even n > 6, 4n 
= 2(n-6)/2 +

Proof. Use 3.9 and 3.10 for and w .  With A = 4 n — 

~n 
— W n~

it follows from 3.5 and 3.7 that

LIX + 2
~ n + = 2(n-2)/2

whence
4 = 2 6)./’2 +~~ i~ +~~~~n 2 n  ~~~~t

and the stated equality follows. U

1
~~~~~~~ ~~~~~~~~~~~~~~~~~~
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3.12 THEOREM. Let denote the number of isornorphiurn types of

n-seines and the number of isomorphlsm t~p~ s of symmetric

n—seines. Then for all even n > 6 ,

= { ~-(l + 2l~~ ) 
— 1414 ’ j — l  + 30C~ .2  — 2~~~1 when n =

1 + ~ ( 3 c ~ +1 - 13c~~) + 5
~~~~ 

- ~~~~ when n = LIj + 2

and

~~2j 
- 

~~2j-2 
+ 

~~~~~~~ 

— 22
~ j - l  + l5C ~~_ 2  - 14 •~~~2 - 

when n =

Tn 
= I

~~2j+1 
- 

2~ 2j 
+ 
~~j+l 

- 

~~~~~~~ 

+ 2~ j - l  - 
~~j - i  

— ~~~~~ + when n = Uj+2

Proof. Let 4n ’ ~n’ 
W

n 
and A be as ~n 3.11, and let

denote the number of isomorphism types of reversH-le rooted n—seines.

Each unambiguous  symmetric n—seine yields a s i n r ] e type of reversible

rooted n—seine , and by 3.7 each ambiguous syss-ic tric n—seine yields

two such types (assuming n > 14). hence (a — ‘~~~) + 21~n ~n 
and

the above equation for follows from 2.6 -m~ 
p .11. Similarly , thcro

is a single type of’ rooted n—seine associated ~:~~-h each unambiguous

symmetric n—seine , there are two .such types asses~ ated with each

n—seine that is unambiguous and asymmetric Q r  ~nb t yu ous and Syrr rcetric H

or ambiguous and skew—symmetric , and there ars f i r  such types associ—

ated with each n—seine that is ambiguous but u~~~ ter syinisetri ’: nor

skew—symmetric. It follows that for even n >

— 

(o ~ 
— 4~ ) + 2 ( T  — 4n — 

~~n 
— 

~~~~ 
2
~ n + 2w ÷ LIX

is the number r~ of isomorphism types of rnrO ch n—seines , whe n ce

2T n r — 2
~ n + ~~ + 2w f o .

The stated conclusion then follows with the a 1 of 2.5, 3.11 and the

value of an already established. 0 

~~~ - ~~- • - _ _ _
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